Last updated: 2019-04-03
workflowr checks: (Click a bullet for more information) ✔ R Markdown file: up-to-date
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
✔ Environment: empty
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
✔ Seed:
set.seed(20190110)
The command set.seed(20190110)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
✔ Session information: recorded
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
✔ Repository version: 5870e6e
wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .DS_Store
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: ._.DS_Store
Ignored: analysis/cache/
Ignored: build-logs/
Ignored: data/alevin/
Ignored: data/cellranger/
Ignored: data/processed/
Ignored: data/published/
Ignored: output/.DS_Store
Ignored: output/._.DS_Store
Ignored: output/03-clustering/selected_genes.csv.zip
Ignored: output/04-marker-genes/de_genes.csv.zip
Ignored: packrat/.DS_Store
Ignored: packrat/._.DS_Store
Ignored: packrat/lib-R/
Ignored: packrat/lib-ext/
Ignored: packrat/lib/
Ignored: packrat/src/
Untracked files:
Untracked: DGEList.Rds
Untracked: output/90-methods/package-versions.json
Untracked: scripts/build.pbs
Unstaged changes:
Modified: analysis/_site.yml
Modified: output/01-preprocessing/droplet-selection.pdf
Modified: output/01-preprocessing/parameters.json
Modified: output/01-preprocessing/selection-comparison.pdf
Modified: output/01B-alevin/alevin-comparison.pdf
Modified: output/01B-alevin/parameters.json
Modified: output/02-quality-control/qc-thresholds.pdf
Modified: output/02-quality-control/qc-validation.pdf
Modified: output/03-clustering/cluster-comparison.pdf
Modified: output/03-clustering/cluster-validation.pdf
Modified: output/04-marker-genes/de-results.pdf
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
File | Version | Author | Date | Message |
---|---|---|---|---|
html | 33ac14f | Luke Zappia | 2019-03-20 | Tidy up website |
html | ae75188 | Luke Zappia | 2019-03-06 | Revise figures after proofread |
html | 2693e97 | Luke Zappia | 2019-03-05 | Add methods page |
html | fefdd07 | Luke Zappia | 2019-02-28 | Add PAGA figure |
Rmd | dd11830 | Luke Zappia | 2019-02-12 | Add PAGA text |
html | dd11830 | Luke Zappia | 2019-02-12 | Add PAGA text |
html | ee99ad1 | Luke Zappia | 2019-02-10 | Add PAGA |
# scRNA-seq
library("SingleCellExperiment")
# System
library("processx")
# Plotting
library("cowplot")
# Presentation
library("knitr")
# Tidyverse
library("tidyverse")
source(here::here("R/output.R"))
source(here::here("R/plotting.R"))
clust_path <- here::here("data/processed/03-clustered.Rds")
paga_path <- here::here("scripts/paga.py")
In this document we are going to explore the relationship between our clusters using partition-based graph abstraction (PAGA). PAGA builds a graph where each node is a cluster and the edges represent connectivity between clusters. This can give us an overview of the dataset and the relationships between cell types.
if (file.exists(clust_path)) {
sce <- read_rds(clust_path)
} else {
stop("Clustered dataset is missing. ",
"Please run '03-clustering.Rmd' first.",
call. = FALSE)
}
PAGA is available as part of the scanpy
Python package. The PAGA analysis is performed using the following Python script.
cat(readLines(paga_path), sep = "\n")
#!/usr/bin/env python3
import os
import json
import numpy
import pandas as pd
import loompy
import anndata
import scanpy as sc
# Show errors (0), warnings (1), info (2) and hints (3)
sc.settings.verbosity = 3
print('Reading clustering parameters...')
params_path = 'output/03-clustering/parameters.json'
with open(params_path) as params_file:
params = json.load(params_file)
for param in params:
if param['Parameter'][0] == 'n_pcs':
n_pcs = param['Value'][0]
if param['Parameter'][0] == 'knn':
knn = param['Value'][0]
print('Reading Loom file...')
loom_path = 'data/processed/03-clustered-sel.loom'
col_names = ['Cell', 'Barcode', 'Dataset', 'Sample', 'Cluster']
obs = dict()
with loompy.connect(loom_path) as loom_con:
X = loom_con.layers[''][()].T
for col in col_names:
obs[col] = loom_con.col_attrs[col]
print('Converting to AnnData...')
adata = anndata.AnnData(X=X, obs=obs)
print('Calculating PCs...')
sc.tl.pca(adata, svd_solver='arpack')
print('Calculating neighbour graph...')
sc.pp.neighbors(adata, n_neighbors=30, n_pcs=15)
print('Perfoming PAGA...')
sc.tl.paga(adata, groups='Cluster')
print('Calculating cluster graph layout...')
sc.pl.paga(adata, plot=False)
print('Calculating cell graph layout...')
sc.tl.draw_graph(adata, init_pos='paga')
out_dir = 'output/05-paga'
if not os.path.exists(out_dir):
os.makedirs(out_dir)
def con2edges(con, names=None, sparse=True):
print('Converting connectivity matrix to edges...')
n = con.shape[0]
edges = pd.DataFrame(columns=['From', 'To', 'Connectivity'])
for i in range(n):
for j in range(i + 1, n):
if names is not None:
fr = names[i]
to = names[j]
else:
fr = str(i)
to = str(j)
connectivity = con[i, j]
if sparse and connectivity == 0:
continue
entry = {'From' : fr, 'To' : to,
'Connectivity' : con[i, j]}
edges = edges.append(entry, ignore_index=True)
return edges
print('Outputting cluster edges...')
clust_con = adata.uns['paga']['connectivities'].toarray()
clust_edges = con2edges(clust_con)
clust_edges.to_csv(os.path.join(out_dir, 'cluster_edges.csv'),
index=False)
print('Outputting cluster tree edges...')
clust_tree_con = adata.uns['paga']['connectivities_tree'].toarray()
clust_tree_edges = con2edges(clust_tree_con)
clust_tree_edges.to_csv(os.path.join(out_dir, 'cluster_tree_edges.csv'),
index=False)
print('Outputting cluster embedding...')
clust_embedding = pd.DataFrame(adata.uns['paga']['pos'], columns=['X', 'Y'])
clust_embedding['Cluster'] = range(clust_embedding.shape[0])
clust_embedding = clust_embedding[['Cluster', 'X', 'Y']]
clust_embedding.to_csv(os.path.join(out_dir, 'cluster_embedding.csv'),
index=False)
print('Outputting cell edges...')
cells = adata.obs['Cell']
cell_con = adata.uns['neighbors']['connectivities']
cell_edges = pd.DataFrame(columns=['From', 'To', 'Connectivity'])
n_rows = len(cell_con.indptr)
for i in range(len(cell_con.indptr) - 1):
row_ind = cell_con.indices[cell_con.indptr[i]:cell_con.indptr[i + 1]]
print(f'\r\tRow {i} of {n_rows}', end='')
for k, j in enumerate(row_ind):
if j > i:
con = cell_con.data[cell_con.indptr[i] + k]
fr = cells[i]
to = cells[j]
entry = {'From' : fr, 'To' : to, 'Connectivity' : con}
cell_edges = cell_edges.append(entry, ignore_index=True)
print('\n')
cell_edges.to_csv(os.path.join(out_dir, 'cell_edges.csv'),
index=False)
print('Outputting cell embedding...')
x = adata.obsm['X_draw_graph_fa'][:, 0]
y = adata.obsm['X_draw_graph_fa'][:, 1]
cell_embedding = pd.DataFrame({'Cell' : cells, 'X' : x, 'Y' : y})
cell_embedding.to_csv(os.path.join(out_dir, 'cell_embedding.csv'),
index=False)
print('Done!')
paga_out <- run(here::here("scripts/run_paga.sh"))
We then load the PAGA results and visualise them here.
clust_embedding <- read_csv(
here::here("output/05-paga/cluster_embedding.csv"),
col_types = cols(
.default = col_double()
)
) %>%
mutate(Size = as.numeric(table(colData(sce)$Cluster))) %>%
mutate(Cluster = factor(Cluster, levels = levels(colData(sce)$Cluster)))
clust_edges <- read_csv(
here::here("output/05-paga/cluster_edges.csv"),
col_types = cols(
.default = col_double()
)
) %>%
mutate(To = factor(To, levels = levels(colData(sce)$Cluster)),
From = factor(From, levels = levels(colData(sce)$Cluster))) %>%
left_join(clust_embedding, by = c("From" = "Cluster")) %>%
rename(FromX = X, FromY = Y) %>%
select(-Size) %>%
left_join(clust_embedding, by = c("To" = "Cluster")) %>%
rename(ToX = X, ToY = Y) %>%
select(-Size)
cell_embedding <- read_csv(
here::here("output/05-paga/cell_embedding.csv"),
col_types = cols(
.default = col_double(),
Cell = col_character()
)
) %>%
mutate(Cluster = colData(sce)$Cluster)
cell_edges <- read_csv(
here::here("output/05-paga/cell_edges.csv"),
col_types = cols(
.default = col_double(),
From = col_character(),
To = col_character()
)
) %>%
left_join(cell_embedding, by = c("From" = "Cell")) %>%
rename(FromX = X, FromY = Y) %>%
select(-Cluster) %>%
left_join(cell_embedding, by = c("To" = "Cell")) %>%
rename(ToX = X, ToY = Y) %>%
select(-Cluster)
The PAGA graph shows the relationship between clusters. Here we have use a force directed graph layout in order to visualise it. PAGA calculates the connectivity between each pair of clusters but we need to apply some threshold to that to select the meaningful edges.
src_list <- lapply(seq(0, 0.9, 0.1), function(thresh) {
src <- c(
"### Con {{thresh}} {.unnumbered}",
"```{r clust-paga-{{thresh}}}",
"plotPAGAClustGraph(clust_embedding, clust_edges, thresh = {{thresh}})",
"```",
""
)
knit_expand(text = src)
})
out <- knit_child(text = unlist(src_list), options = list(cache = FALSE))
plotPAGAClustGraph(clust_embedding, clust_edges, thresh = 0)
Version | Author | Date |
---|---|---|
fefdd07 | Luke Zappia | 2019-02-28 |
plotPAGAClustGraph(clust_embedding, clust_edges, thresh = 0.1)
Version | Author | Date |
---|---|---|
fefdd07 | Luke Zappia | 2019-02-28 |
plotPAGAClustGraph(clust_embedding, clust_edges, thresh = 0.2)
Version | Author | Date |
---|---|---|
fefdd07 | Luke Zappia | 2019-02-28 |
plotPAGAClustGraph(clust_embedding, clust_edges, thresh = 0.3)
Version | Author | Date |
---|---|---|
fefdd07 | Luke Zappia | 2019-02-28 |
plotPAGAClustGraph(clust_embedding, clust_edges, thresh = 0.4)
Version | Author | Date |
---|---|---|
fefdd07 | Luke Zappia | 2019-02-28 |
plotPAGAClustGraph(clust_embedding, clust_edges, thresh = 0.5)
Version | Author | Date |
---|---|---|
fefdd07 | Luke Zappia | 2019-02-28 |
plotPAGAClustGraph(clust_embedding, clust_edges, thresh = 0.6)
Version | Author | Date |
---|---|---|
fefdd07 | Luke Zappia | 2019-02-28 |
plotPAGAClustGraph(clust_embedding, clust_edges, thresh = 0.7)
Version | Author | Date |
---|---|---|
fefdd07 | Luke Zappia | 2019-02-28 |
plotPAGAClustGraph(clust_embedding, clust_edges, thresh = 0.8)
Version | Author | Date |
---|---|---|
fefdd07 | Luke Zappia | 2019-02-28 |
plotPAGAClustGraph(clust_embedding, clust_edges, thresh = 0.9)
Version | Author | Date |
---|---|---|
fefdd07 | Luke Zappia | 2019-02-28 |
Number of selected edges for different threshold connectivities.
plot_data <- tibble(
Threshold = seq(0, 1, 0.01)
) %>%
mutate(Edges = map_int(Threshold, function(thresh) {
sum(clust_edges$Connectivity > thresh)
}))
con_thresh <- 0.7
ggplot(plot_data, aes(x = Threshold, y = Edges)) +
geom_point() +
geom_line() +
geom_vline(xintercept = con_thresh, colour = "red") +
xlab("Connectivity threshold") +
ylab("Number of edges") +
theme_minimal()
Version | Author | Date |
---|---|---|
fefdd07 | Luke Zappia | 2019-02-28 |
Here we have selected a connectivity threshold of 0.7.
The cluster graph can be used as a starting point to layout individual cells, allowing us to see things at a higher resolution.
plotPAGACellGraph(cell_embedding, cell_edges, thresh = 0.1)
Version | Author | Date |
---|---|---|
fefdd07 | Luke Zappia | 2019-02-28 |
Looking the two views together let’s us see both global and specific details.
plotPAGACompare(clust_embedding, clust_edges, clust_thresh = con_thresh,
cell_embedding, cell_edges, cell_thresh = 0.1)
Version | Author | Date |
---|---|---|
fefdd07 | Luke Zappia | 2019-02-28 |
known_genes <- c(
# Stroma
"TAGLN", "ACTA2", "MAB21L2", "DLK1", "GATA3", "COL2A1", "COL9A3",
# Podocyte
"PODXL", "NPHS2", "TCF21",
# Cell cycle
"HIST1H4C", "PCLAF", "CENPF", "HMGB2",
# Endothelium
"CLDN5", "PECAM1", "KDR", "CALM1",
# Neural
"TTYH1", "SOX2", "HES6", "STMN2",
# Epithelium
"PAX2", "PAX8", "KRT19",
# Muscle
"MYOG", "MYOD1"
)
for (gene in known_genes) {
cell_embedding[[gene]] <- logcounts(sce)[gene, ]
}
clust_genes <- cell_embedding %>%
select(-Cell, -X, -Y) %>%
group_by(Cluster) %>%
summarise_all(mean)
clust_embedding <- left_join(clust_embedding, clust_genes, by = "Cluster")
src_list <- lapply(known_genes, function(gene) {
src <- c(
"### {{gene}} {.unnumbered}",
"```{r compare-{{gene}}}",
"plotPAGACompare(clust_embedding, clust_edges,",
"clust_thresh = con_thresh, cell_embedding, cell_edges,
cell_thresh = 0.1, colour = '{{gene}}')",
"```",
""
)
knit_expand(text = src)
})
out <- knit_child(text = unlist(src_list), options = list(cache = FALSE))
plotPAGACompare(clust_embedding, clust_edges,
clust_thresh = con_thresh, cell_embedding, cell_edges,
cell_thresh = 0.1, colour = 'TAGLN')
Version | Author | Date |
---|---|---|
fefdd07 | Luke Zappia | 2019-02-28 |
plotPAGACompare(clust_embedding, clust_edges,
clust_thresh = con_thresh, cell_embedding, cell_edges,
cell_thresh = 0.1, colour = 'ACTA2')
Version | Author | Date |
---|---|---|
fefdd07 | Luke Zappia | 2019-02-28 |
plotPAGACompare(clust_embedding, clust_edges,
clust_thresh = con_thresh, cell_embedding, cell_edges,
cell_thresh = 0.1, colour = 'MAB21L2')
Version | Author | Date |
---|---|---|
fefdd07 | Luke Zappia | 2019-02-28 |
plotPAGACompare(clust_embedding, clust_edges,
clust_thresh = con_thresh, cell_embedding, cell_edges,
cell_thresh = 0.1, colour = 'DLK1')
Version | Author | Date |
---|---|---|
fefdd07 | Luke Zappia | 2019-02-28 |
plotPAGACompare(clust_embedding, clust_edges,
clust_thresh = con_thresh, cell_embedding, cell_edges,
cell_thresh = 0.1, colour = 'GATA3')
Version | Author | Date |
---|---|---|
fefdd07 | Luke Zappia | 2019-02-28 |
plotPAGACompare(clust_embedding, clust_edges,
clust_thresh = con_thresh, cell_embedding, cell_edges,
cell_thresh = 0.1, colour = 'COL2A1')
Version | Author | Date |
---|---|---|
fefdd07 | Luke Zappia | 2019-02-28 |
plotPAGACompare(clust_embedding, clust_edges,
clust_thresh = con_thresh, cell_embedding, cell_edges,
cell_thresh = 0.1, colour = 'COL9A3')
Version | Author | Date |
---|---|---|
fefdd07 | Luke Zappia | 2019-02-28 |
plotPAGACompare(clust_embedding, clust_edges,
clust_thresh = con_thresh, cell_embedding, cell_edges,
cell_thresh = 0.1, colour = 'PODXL')
Version | Author | Date |
---|---|---|
fefdd07 | Luke Zappia | 2019-02-28 |
plotPAGACompare(clust_embedding, clust_edges,
clust_thresh = con_thresh, cell_embedding, cell_edges,
cell_thresh = 0.1, colour = 'NPHS2')
Version | Author | Date |
---|---|---|
fefdd07 | Luke Zappia | 2019-02-28 |
plotPAGACompare(clust_embedding, clust_edges,
clust_thresh = con_thresh, cell_embedding, cell_edges,
cell_thresh = 0.1, colour = 'TCF21')
Version | Author | Date |
---|---|---|
fefdd07 | Luke Zappia | 2019-02-28 |
plotPAGACompare(clust_embedding, clust_edges,
clust_thresh = con_thresh, cell_embedding, cell_edges,
cell_thresh = 0.1, colour = 'HIST1H4C')
Version | Author | Date |
---|---|---|
fefdd07 | Luke Zappia | 2019-02-28 |
plotPAGACompare(clust_embedding, clust_edges,
clust_thresh = con_thresh, cell_embedding, cell_edges,
cell_thresh = 0.1, colour = 'PCLAF')
Version | Author | Date |
---|---|---|
fefdd07 | Luke Zappia | 2019-02-28 |
plotPAGACompare(clust_embedding, clust_edges,
clust_thresh = con_thresh, cell_embedding, cell_edges,
cell_thresh = 0.1, colour = 'CENPF')
Version | Author | Date |
---|---|---|
fefdd07 | Luke Zappia | 2019-02-28 |
plotPAGACompare(clust_embedding, clust_edges,
clust_thresh = con_thresh, cell_embedding, cell_edges,
cell_thresh = 0.1, colour = 'HMGB2')
Version | Author | Date |
---|---|---|
fefdd07 | Luke Zappia | 2019-02-28 |
plotPAGACompare(clust_embedding, clust_edges,
clust_thresh = con_thresh, cell_embedding, cell_edges,
cell_thresh = 0.1, colour = 'CLDN5')
Version | Author | Date |
---|---|---|
fefdd07 | Luke Zappia | 2019-02-28 |
plotPAGACompare(clust_embedding, clust_edges,
clust_thresh = con_thresh, cell_embedding, cell_edges,
cell_thresh = 0.1, colour = 'PECAM1')
Version | Author | Date |
---|---|---|
fefdd07 | Luke Zappia | 2019-02-28 |
plotPAGACompare(clust_embedding, clust_edges,
clust_thresh = con_thresh, cell_embedding, cell_edges,
cell_thresh = 0.1, colour = 'KDR')
Version | Author | Date |
---|---|---|
fefdd07 | Luke Zappia | 2019-02-28 |
plotPAGACompare(clust_embedding, clust_edges,
clust_thresh = con_thresh, cell_embedding, cell_edges,
cell_thresh = 0.1, colour = 'CALM1')
Version | Author | Date |
---|---|---|
fefdd07 | Luke Zappia | 2019-02-28 |
plotPAGACompare(clust_embedding, clust_edges,
clust_thresh = con_thresh, cell_embedding, cell_edges,
cell_thresh = 0.1, colour = 'TTYH1')
Version | Author | Date |
---|---|---|
fefdd07 | Luke Zappia | 2019-02-28 |
plotPAGACompare(clust_embedding, clust_edges,
clust_thresh = con_thresh, cell_embedding, cell_edges,
cell_thresh = 0.1, colour = 'SOX2')
Version | Author | Date |
---|---|---|
fefdd07 | Luke Zappia | 2019-02-28 |
plotPAGACompare(clust_embedding, clust_edges,
clust_thresh = con_thresh, cell_embedding, cell_edges,
cell_thresh = 0.1, colour = 'HES6')
Version | Author | Date |
---|---|---|
fefdd07 | Luke Zappia | 2019-02-28 |
plotPAGACompare(clust_embedding, clust_edges,
clust_thresh = con_thresh, cell_embedding, cell_edges,
cell_thresh = 0.1, colour = 'STMN2')
Version | Author | Date |
---|---|---|
fefdd07 | Luke Zappia | 2019-02-28 |
plotPAGACompare(clust_embedding, clust_edges,
clust_thresh = con_thresh, cell_embedding, cell_edges,
cell_thresh = 0.1, colour = 'PAX2')
Version | Author | Date |
---|---|---|
fefdd07 | Luke Zappia | 2019-02-28 |
plotPAGACompare(clust_embedding, clust_edges,
clust_thresh = con_thresh, cell_embedding, cell_edges,
cell_thresh = 0.1, colour = 'PAX8')
Version | Author | Date |
---|---|---|
fefdd07 | Luke Zappia | 2019-02-28 |
plotPAGACompare(clust_embedding, clust_edges,
clust_thresh = con_thresh, cell_embedding, cell_edges,
cell_thresh = 0.1, colour = 'KRT19')
Version | Author | Date |
---|---|---|
fefdd07 | Luke Zappia | 2019-02-28 |
plotPAGACompare(clust_embedding, clust_edges,
clust_thresh = con_thresh, cell_embedding, cell_edges,
cell_thresh = 0.1, colour = 'MYOG')
Version | Author | Date |
---|---|---|
fefdd07 | Luke Zappia | 2019-02-28 |
plotPAGACompare(clust_embedding, clust_edges,
clust_thresh = con_thresh, cell_embedding, cell_edges,
cell_thresh = 0.1, colour = 'MYOD1')
Version | Author | Date |
---|---|---|
fefdd07 | Luke Zappia | 2019-02-28 |
clust_plot <- ggplot(clust_embedding, aes(x = X, y = Y)) +
geom_segment(data = clust_edges,
aes(x = FromX, y = FromY, xend = ToX, yend = ToY,
colour = Connectivity, alpha = Connectivity), size = 4) +
scale_colour_viridis_c(limits = c(0, 1)) +
scale_alpha_continuous(limits = c(0, 1), range = c(0, 1), guide = FALSE) +
geom_point(aes(fill = Cluster, size = Size), shape = 21) +
geom_text(aes(label = Cluster)) +
scale_size(range = c(6, 20), guide = FALSE) +
scale_fill_discrete(guide = FALSE) +
guides(colour = guide_colourbar(barwidth = 20)) +
ggtitle("PAGA cluster graph") +
theme_void() +
theme(plot.title = element_text(size = rel(1.2), hjust = 0.1,
vjust = 1, margin = margin(5)),
legend.position = "bottom")
cell_plot <- ggplot(cell_embedding, aes(x = X, y = Y)) +
geom_segment(data = cell_edges,
aes(x = FromX, y = FromY, xend = ToX, yend = ToY,
size = Connectivity, alpha = Connectivity)) +
geom_point(aes(colour = Cluster), size = 1) +
scale_alpha_continuous(limits = c(0, 1), range = c(0, 0.5), guide = FALSE) +
scale_colour_discrete(guide = guide_legend(
nrow = 1, override.aes = list(size = 4)
)) +
scale_size(range = c(0.1, 0.5), guide = FALSE) +
ggtitle("Cell shared nearest neighbour graph") +
theme_void() +
theme(plot.title = element_text(size = rel(1.2), hjust = 0.1,
vjust = 1, margin = margin(5)),
legend.position = "bottom")
fig <- plot_grid(clust_plot, cell_plot, nrow = 2, labels = "AUTO")
ggsave(here::here("output", DOCNAME, "paga-results.pdf"), fig,
width = 7, height = 8, scale = 1.5)
ggsave(here::here("output", DOCNAME, "paga-results.png"), fig,
width = 7, height = 8, scale = 1.5)
fig
This table describes parameters used and set in this document.
params <- list(
list(
Parameter = "con_thresh",
Value = con_thresh,
Description = "Connectivity threshold for PAGA graph"
)
)
params <- jsonlite::toJSON(params, pretty = TRUE)
knitr::kable(jsonlite::fromJSON(params))
Parameter | Value | Description |
---|---|---|
con_thresh | 0.7 | Connectivity threshold for PAGA graph |
This table describes the output files produced by this document. Right click and Save Link As… to download the results.
dir.create(here::here("output", DOCNAME), showWarnings = FALSE)
readr::write_lines(params, here::here("output", DOCNAME, "parameters.json"))
knitr::kable(data.frame(
File = c(
getDownloadLink("parameters.json", DOCNAME),
getDownloadLink("cluster_embedding.csv", DOCNAME),
getDownloadLink("cluster_edges.csv", DOCNAME),
getDownloadLink("cluster_tree_edges.csv", DOCNAME),
getDownloadLink("cell_embedding.csv", DOCNAME),
getDownloadLink("cell_edges.csv", DOCNAME),
getDownloadLink("paga-results.png", DOCNAME),
getDownloadLink("paga-results.pdf", DOCNAME)
),
Description = c(
"Parameters set and used in this analysis",
"Embedding for clusters from PAGA",
"Edges for PAGA cluster graph",
"Tree edges for PAGA cluster graph",
"Embedding for cells from PAGA",
"Edges for cell graph",
"PAGA results figure (PNG)",
"PAGA results figure (PDF)"
)
))
File | Description |
---|---|
parameters.json | Parameters set and used in this analysis |
cluster_embedding.csv | Embedding for clusters from PAGA |
cluster_edges.csv | Edges for PAGA cluster graph |
cluster_tree_edges.csv | Tree edges for PAGA cluster graph |
cell_embedding.csv | Embedding for cells from PAGA |
cell_edges.csv | Edges for cell graph |
paga-results.png | PAGA results figure (PNG) |
paga-results.pdf | PAGA results figure (PDF) |
devtools::session_info()
─ Session info ──────────────────────────────────────────────────────────
setting value
version R version 3.5.0 (2018-04-23)
os CentOS release 6.7 (Final)
system x86_64, linux-gnu
ui X11
language (EN)
collate en_US.UTF-8
ctype en_US.UTF-8
tz Australia/Melbourne
date 2019-04-03
─ Packages ──────────────────────────────────────────────────────────────
! package * version date lib source
assertthat 0.2.0 2017-04-11 [1] CRAN (R 3.5.0)
backports 1.1.3 2018-12-14 [1] CRAN (R 3.5.0)
bindr 0.1.1 2018-03-13 [1] CRAN (R 3.5.0)
bindrcpp 0.2.2 2018-03-29 [1] CRAN (R 3.5.0)
Biobase * 2.42.0 2018-10-30 [1] Bioconductor
BiocGenerics * 0.28.0 2018-10-30 [1] Bioconductor
BiocParallel * 1.16.5 2019-01-04 [1] Bioconductor
bitops 1.0-6 2013-08-17 [1] CRAN (R 3.5.0)
broom 0.5.1 2018-12-05 [1] CRAN (R 3.5.0)
callr 3.1.1 2018-12-21 [1] CRAN (R 3.5.0)
cellranger 1.1.0 2016-07-27 [1] CRAN (R 3.5.0)
cli 1.0.1 2018-09-25 [1] CRAN (R 3.5.0)
colorspace 1.4-0 2019-01-13 [1] CRAN (R 3.5.0)
cowplot * 0.9.4 2019-01-08 [1] CRAN (R 3.5.0)
crayon 1.3.4 2017-09-16 [1] CRAN (R 3.5.0)
DelayedArray * 0.8.0 2018-10-30 [1] Bioconductor
desc 1.2.0 2018-05-01 [1] CRAN (R 3.5.0)
devtools 2.0.1 2018-10-26 [1] CRAN (R 3.5.0)
digest 0.6.18 2018-10-10 [1] CRAN (R 3.5.0)
dplyr * 0.7.8 2018-11-10 [1] CRAN (R 3.5.0)
evaluate 0.12 2018-10-09 [1] CRAN (R 3.5.0)
forcats * 0.3.0 2018-02-19 [1] CRAN (R 3.5.0)
fs 1.2.6 2018-08-23 [1] CRAN (R 3.5.0)
generics 0.0.2 2018-11-29 [1] CRAN (R 3.5.0)
GenomeInfoDb * 1.18.1 2018-11-12 [1] Bioconductor
GenomeInfoDbData 1.2.0 2019-01-15 [1] Bioconductor
GenomicRanges * 1.34.0 2018-10-30 [1] Bioconductor
ggplot2 * 3.1.0 2018-10-25 [1] CRAN (R 3.5.0)
git2r 0.24.0 2019-01-07 [1] CRAN (R 3.5.0)
glue 1.3.0 2018-07-17 [1] CRAN (R 3.5.0)
gtable 0.2.0 2016-02-26 [1] CRAN (R 3.5.0)
haven 2.0.0 2018-11-22 [1] CRAN (R 3.5.0)
here 0.1 2017-05-28 [1] CRAN (R 3.5.0)
hms 0.4.2 2018-03-10 [1] CRAN (R 3.5.0)
htmltools 0.3.6 2017-04-28 [1] CRAN (R 3.5.0)
httr 1.4.0 2018-12-11 [1] CRAN (R 3.5.0)
IRanges * 2.16.0 2018-10-30 [1] Bioconductor
jsonlite 1.6 2018-12-07 [1] CRAN (R 3.5.0)
knitr * 1.21 2018-12-10 [1] CRAN (R 3.5.0)
P lattice 0.20-35 2017-03-25 [5] CRAN (R 3.5.0)
lazyeval 0.2.1 2017-10-29 [1] CRAN (R 3.5.0)
lubridate 1.7.4 2018-04-11 [1] CRAN (R 3.5.0)
magrittr 1.5 2014-11-22 [1] CRAN (R 3.5.0)
P Matrix 1.2-14 2018-04-09 [5] CRAN (R 3.5.0)
matrixStats * 0.54.0 2018-07-23 [1] CRAN (R 3.5.0)
memoise 1.1.0 2017-04-21 [1] CRAN (R 3.5.0)
modelr 0.1.3 2019-02-05 [1] CRAN (R 3.5.0)
munsell 0.5.0 2018-06-12 [1] CRAN (R 3.5.0)
P nlme 3.1-137 2018-04-07 [5] CRAN (R 3.5.0)
pillar 1.3.1 2018-12-15 [1] CRAN (R 3.5.0)
pkgbuild 1.0.2 2018-10-16 [1] CRAN (R 3.5.0)
pkgconfig 2.0.2 2018-08-16 [1] CRAN (R 3.5.0)
pkgload 1.0.2 2018-10-29 [1] CRAN (R 3.5.0)
plyr 1.8.4 2016-06-08 [1] CRAN (R 3.5.0)
prettyunits 1.0.2 2015-07-13 [1] CRAN (R 3.5.0)
processx * 3.2.1 2018-12-05 [1] CRAN (R 3.5.0)
ps 1.3.0 2018-12-21 [1] CRAN (R 3.5.0)
purrr * 0.3.0 2019-01-27 [1] CRAN (R 3.5.0)
R.methodsS3 1.7.1 2016-02-16 [1] CRAN (R 3.5.0)
R.oo 1.22.0 2018-04-22 [1] CRAN (R 3.5.0)
R.utils 2.7.0 2018-08-27 [1] CRAN (R 3.5.0)
R6 2.3.0 2018-10-04 [1] CRAN (R 3.5.0)
Rcpp 1.0.0 2018-11-07 [1] CRAN (R 3.5.0)
RCurl 1.95-4.11 2018-07-15 [1] CRAN (R 3.5.0)
readr * 1.3.1 2018-12-21 [1] CRAN (R 3.5.0)
readxl 1.2.0 2018-12-19 [1] CRAN (R 3.5.0)
remotes 2.0.2 2018-10-30 [1] CRAN (R 3.5.0)
rlang 0.3.1 2019-01-08 [1] CRAN (R 3.5.0)
rmarkdown 1.11 2018-12-08 [1] CRAN (R 3.5.0)
rprojroot 1.3-2 2018-01-03 [1] CRAN (R 3.5.0)
rstudioapi 0.9.0 2019-01-09 [1] CRAN (R 3.5.0)
rvest 0.3.2 2016-06-17 [1] CRAN (R 3.5.0)
S4Vectors * 0.20.1 2018-11-09 [1] Bioconductor
scales 1.0.0 2018-08-09 [1] CRAN (R 3.5.0)
sessioninfo 1.1.1 2018-11-05 [1] CRAN (R 3.5.0)
SingleCellExperiment * 1.4.1 2019-01-04 [1] Bioconductor
stringi 1.2.4 2018-07-20 [1] CRAN (R 3.5.0)
stringr * 1.3.1 2018-05-10 [1] CRAN (R 3.5.0)
SummarizedExperiment * 1.12.0 2018-10-30 [1] Bioconductor
testthat 2.0.1 2018-10-13 [4] CRAN (R 3.5.0)
tibble * 2.0.1 2019-01-12 [1] CRAN (R 3.5.0)
tidyr * 0.8.2 2018-10-28 [1] CRAN (R 3.5.0)
tidyselect 0.2.5 2018-10-11 [1] CRAN (R 3.5.0)
tidyverse * 1.2.1 2017-11-14 [1] CRAN (R 3.5.0)
usethis 1.4.0 2018-08-14 [1] CRAN (R 3.5.0)
whisker 0.3-2 2013-04-28 [1] CRAN (R 3.5.0)
withr 2.1.2 2018-03-15 [1] CRAN (R 3.5.0)
workflowr 1.1.1 2018-07-06 [1] CRAN (R 3.5.0)
xfun 0.4 2018-10-23 [1] CRAN (R 3.5.0)
xml2 1.2.0 2018-01-24 [1] CRAN (R 3.5.0)
XVector 0.22.0 2018-10-30 [1] Bioconductor
yaml 2.2.0 2018-07-25 [1] CRAN (R 3.5.0)
zlibbioc 1.28.0 2018-10-30 [1] Bioconductor
[1] /group/bioi1/luke/analysis/phd-thesis-analysis/packrat/lib/x86_64-pc-linux-gnu/3.5.0
[2] /group/bioi1/luke/analysis/phd-thesis-analysis/packrat/lib-ext/x86_64-pc-linux-gnu/3.5.0
[3] /group/bioi1/luke/analysis/phd-thesis-analysis/packrat/lib-R/x86_64-pc-linux-gnu/3.5.0
[4] /home/luke.zappia/R/x86_64-pc-linux-gnu-library/3.5
[5] /usr/local/installed/R/3.5.0/lib64/R/library
P ── Loaded and on-disk path mismatch.
This reproducible R Markdown analysis was created with workflowr 1.1.1