A simulated scRNA-seq dataset generated using the splatter
package and
clustered using the SC3
and Seurat
packages.
Format
sc_example
is a list holding a simulated scRNA-seq dataset. Items
in the list included the simulated counts, normalised log counts,
tSNE dimensionality reduction and cell assignments from SC3
and Seurat
clustering.
Source
# Simulation
library("splatter") # Version 1.2.1
<- splatSimulate(batchCells = 200, nGenes = 10000,
sim group.prob = c(0.4, 0.2, 0.2, 0.15, 0.05),
de.prob = c(0.1, 0.2, 0.05, 0.1, 0.05),
method = "groups", seed = 1)
<- counts(sim)[1:1000, ]
sim_counts
# SC3 Clustering
library("SC3") # Version 1.7.6
library("scater") # Version 1.6.2
<- SingleCellExperiment(assays = list(counts = sim_counts))
sim_sc3 rowData(sim_sc3)$feature_symbol <- rownames(sim_counts)
<- normalise(sim_sc3)
sim_sc3 <- sc3(sim_sc3, ks = 1:8, biology = FALSE, n_cores = 1)
sim_sc3 <- runTSNE(sim_sc3)
sim_sc3
# Seurat Clustering
library("Seurat") # Version 2.2.0
<- CreateSeuratObject(sim_counts)
sim_seurat <- NormalizeData(sim_seurat, display.progress = FALSE)
sim_seurat <- FindVariableGenes(sim_seurat, do.plot = FALSE,
sim_seurat display.progress = FALSE)
<- ScaleData(sim_seurat, display.progress = FALSE)
sim_seurat <- RunPCA(sim_seurat, do.print = FALSE)
sim_seurat <- FindClusters(sim_seurat, dims.use = 1:6,
sim_seurat resolution = seq(0, 1, 0.1),
print.output = FALSE)
<- list(counts = counts(sim_sc3),
sc_example logcounts = logcounts(sim_sc3),
tsne = reducedDim(sim_sc3),
sc3_clusters = as.data.frame(colData(sim_sc3)),
seurat_clusters = sim_seurat@meta.data)